348 research outputs found

    Low temperature properties of the triangular-lattice antiferromagnet: a bosonic spinon theory

    Full text link
    We study the low temperature properties of the triangular-lattice Heisenberg antiferromagnet with a mean field Schwinger spin-1/2 boson scheme that reproduces quantitatively the zero temperature energy spectrum derived previously using series expansions. By analyzing the spin-spin and the boson density-density dynamical structure factors, we identify the unphysical spin excitations that come from the relaxation of the local constraint on bosons. This allows us to reconstruct a free energy based on the physical excitations only, whose predictions for entropy and uniform susceptibility seem to be reliable within the temperature range $0< T <0.3J, which is difficult to access by other methods. The high values of entropy, also found in high temperature expansions studies, can be attributed to the roton-like narrowed dispersion at finite temperatures.Comment: 16 pages, 5 figure

    Magnons and Excitation Continuum in XXZ triangular antiferromagnetic model: Application to Ba3CoSb2O9Ba_3CoSb_2O_9

    Full text link
    We investigate the excitation spectrum of the triangular-lattice antiferromagnetic XXZXXZ model using series expansions and mean field Schwinger bosons approaches. The single-magnon spectrum computed with series expansions exhibits rotonic minima at the middle points of the edges of the Brillouin zone, for all values of the anisotropy parameter in the range 0Jz/J10\leq J^z/J\leq1. Based on the good agreement with series expansions for the single-magnon spectrum, we compute the full dynamical magnetic structure factor within the mean field Schwinger boson approach to investigate the relevance of the XXZXXZ model for the description of the unusual spectrum found recently in Ba3CoSb2O9Ba_3CoSb_2O_9. In particular, we obtain an extended continuum above the spin wave excitations, which is further enhanced and brought closer to those observed in Ba3CoSb2O9Ba_3CoSb_2O_9 with the addition of a second neighbor exchange interaction approximately 15% of the nearest-neighbor value. Our results support the idea that excitation continuum with substantial spectral-weight are generically present in two-dimensional frustrated spin systems and fractionalization in terms of {\it bosonic} spinons presents an efficient way to describe them.Comment: 8 pages, 4 figure

    Small-Angle Scattering of X-Rays from Extragalactic Sources by Dust in Intervening Galaxies

    Get PDF
    Gamma-ray bursts are now known to be a cosmological population of objects, which are often accompanied by X-ray and optical afterglows. The total energy emitted in the afterglow can be similar to the energy radiated in the gamma-ray burst itself. If a galaxy containing a large column density of dust is near the line of sight to a gamma-ray burst, small-angle scattering of the X-rays due to diffraction by the dust grains will give rise to an X-ray echo of the afterglow. A measurement of the angular size of the echo at a certain time after the afterglow is observed yields a combination of the angular diameter distances to the scattering galaxy and the gamma-ray burst that can be used to constrain cosmological models in the same way as a time delay in a gravitational lens. The scattering galaxy will generally cause gravitational lensing as well, and this should modify the shape of the X-ray echo from a circular ring. The main difficulty in detecting this phenomenon is the very low flux expected for the echo. The flux can be increased when the gamma-ray burst is highly magnified by gravitational lensing, or when the deflecting galaxy is at low redshift. X-ray echos of continuous (but variable) sources, such as quasars, may also be detectable with high-resolution instruments and would allow similar measurements.Comment: To be published in Ap

    An XMM-Newton observation of Ton S180: Constraints on the continuum emission in ultrasoft Seyfert galaxies

    Full text link
    We present an XMM-Newton observation of the bright, narrow-line, ultrasoft Seyfert 1 galaxy Ton S180. The 0.3-10 keV X-ray spectrum is steep and curved, showing a steep slope above 2.5 keV (Gamma ~ 2.3) and a smooth, featureless excess of emission at lower energies. The spectrum can be adequately parameterised using a simple double power-law model. The source is strongly variable over the course of the observation but shows only weak spectral variability, with the fractional variability amplitude remaining approximately constant over more than a decade in energy. The curved continuum shape and weak spectral variability are discussed in terms of various physical models for the soft X-ray excess emission, including reflection off the surface of an ionised accretion disc, inverse-Compton scattering of soft disc photons by thermal electrons, and Comptonisation by electrons with a hybrid thermal/non-thermal distribution. We emphasise the possibility that the strong soft excess may be produced by dissipation of accretion energy in the hot, upper atmosphere of the putative accretion disc.Comment: 9 pages, accepted for publication in MNRA

    Evidence for the Galactic X-ray Bulge II

    Full text link
    A mosaic of 5 \ros~PSPC pointed observations in the Galactic plane (l25l\sim25^{\circ}) reveals X-ray shadows in the 0.52.00.5-2.0 keV band cast by distant molecular clouds. The observed on-cloud and off-cloud X-ray fluxes indicate that 15\sim15% and 37\sim37% of the diffuse X-ray background in this direction in the \tq~keV and 1.5 keV bands, respectively, originates behind the molecular gas which is located at \sim3 kpc from the Sun. The implication of the derived background X-ray flux beyond the absorbing molecular cloud is consistent with, and lends further support to recent observations of a Galactic X-ray bulge.Comment: 19 pages, 5 figures, 2 table

    Spin wave analysis to the spatially-anisotropic Heisenberg antiferromagnet on triangular lattice

    Full text link
    We study the phase diagram at T=0 of the antiferromagnetic Heisenberg model on the triangular lattice with spatially-anisotropic interactions. For values of the anisotropy very close to J_alpha/J_beta=0.50, conventional spin wave theory predicts that quantum fluctuations melt the classical structures, for S=1/2. For the regime J_beta<J_alpha, it is shown that the incommensurate spiral phases survive until J_beta/J_alpha=0.27, leaving a wide region where the ground state is disordered. The existence of such nonmagnetic states suggests the possibility of spin liquid behavior for intermediate values of the anisotropy.Comment: Revised version, 4 pages, Latex (twocolumn), 4 figures as eps files. To appear in PR

    Rotational invariance and order-parameter stiffness in frustrated quantum spin systems

    Full text link
    We compute, within the Schwinger-boson scheme, the Gaussian-fluctuation corrections to the order-parameter stiffness of two frustrated quantum spin systems: the triangular-lattice Heisenberg antiferromagnet and the J1-J2 model on the square lattice. For the triangular-lattice Heisenberg antiferromagnet we found that the corrections weaken the stiffness, but the ground state of the system remains ordered in the classical 120 spiral pattern. In the case of the J1-J2 model, with increasing frustration the stiffness is reduced until it vanishes, leaving a small window 0.53 < J2/J1 < 0.64 where the system has no long-range magnetic order. In addition, we discuss several methodological questions related to the Schwinger-boson approach. In particular, we show that the consideration of finite clusters which require twisted boundary conditions to fit the infinite-lattice magnetic order avoids the use of ad hoc factors to correct the Schwinger-boson predictions.Comment: 9 pages, Latex, 6 figures as ps files, fig.1 changed and minor text corrections, to appear in Phys.Rev.

    The North Ecliptic Pole Supercluster

    Get PDF
    We have used the ROSAT All-Sky Survey to detect a known supercluster at z=0.087 in the North Ecliptic Pole region. The X-ray data greatly improve our understanding of this supercluster's characteristics, approximately doubling our knowledge of the structure's spatial extent and tripling the cluster/group membership compared to the optical discovery data. The supercluster is a rich structure consisting of at least 21 galaxy clusters and groups, 12 AGN, 61 IRAS galaxies, and various other objects. A majority of these components were discovered with the X-ray data, but the supercluster is also robustly detected in optical, IR, and UV wavebands. Extending 129 x 102 x 67 (1/h50 Mpc)^3, the North Ecliptic Pole Supercluster has a flattened shape oriented nearly edge-on to our line-of-sight. Owing to the softness of the ROSAT X-ray passband and the deep exposure over a large solid angle, we have detected for the first time a significant population of X-ray emitting galaxy groups in a supercluster. These results demonstrate the effectiveness of X-ray observations with contiguous coverage for studying structure in the Universe.Comment: Accepted for publication in The Astrophysical Journal; 5 pages with 2 embedded figures; uses emulateapj.sty; For associated animations, see http://www.ifa.hawaii.edu/~mullis/nep3d.html; A high-resolution color postscript version of the full paper is available at http://www.ifa.hawaii.edu/~mullis/papers/nepsc.ps.g

    Quasiparticle vanishing driven by geometrical frustration

    Full text link
    We investigate the single hole dynamics in the triangular t-J model. We study the structure of the hole spectral function, assuming the existence of a 120 magnetic Neel order. Within the self-consistent Born approximation (SCBA) there is a strong momentum and t sign dependence of the spectra, related to the underlying magnetic structure and the particle-hole asymmetry of the model. For positive t, and in the strong coupling regime, we find that the low energy quasiparticle excitations vanish outside the neighbourhood of the magnetic Goldstone modes; while for negative t the quasiparticle excitations are always well defined. In the latter, we also find resonances of magnetic origin whose energies scale as (J/t)^2/3 and can be identified with string excitations. We argue that this complex structure of the spectra is due to the subtle interplay between magnon-assisted and free hopping mechanisms. Our predictions are supported by an excellent agreement between the SCBA and the exact results on finite size clusters. We conclude that the conventional quasiparticle picture can be broken by the effect of geometrical magnetic frustration.Comment: 6 pages, 7 figures. Published versio
    corecore